

Water Management in Carbonate Reservoirs

Patricia Gusmão, Eric Mackay, Ken Sorbie Heriot-Watt University

BACKGROUND

Water Management Under CO₂-WAG EOR

- WAG injection has become widely applied in Brazilian pre-salt fields due to its potential to control CO₂ emissions by reinjecting the produced CO₂.
- primarily These reservoirs are formed by calcite and dolomite, the presence of other but minerals, such as anhydrite, can impact geochemical reactions and brine composition.
- Mineral equilibrium reactions can also be significantly affected by CO₂ concentration in the original reservoir condition.

METHODOLOGY

Sensitivity Study

- Reservoir flow simulation coupled with geochemical modelling GEM software (CMG group).
- Two models Two different oil compositions.
- 3D model WAG injection Low Sulphate Seawater (LSSW) and pure CO₂

Total

1.00

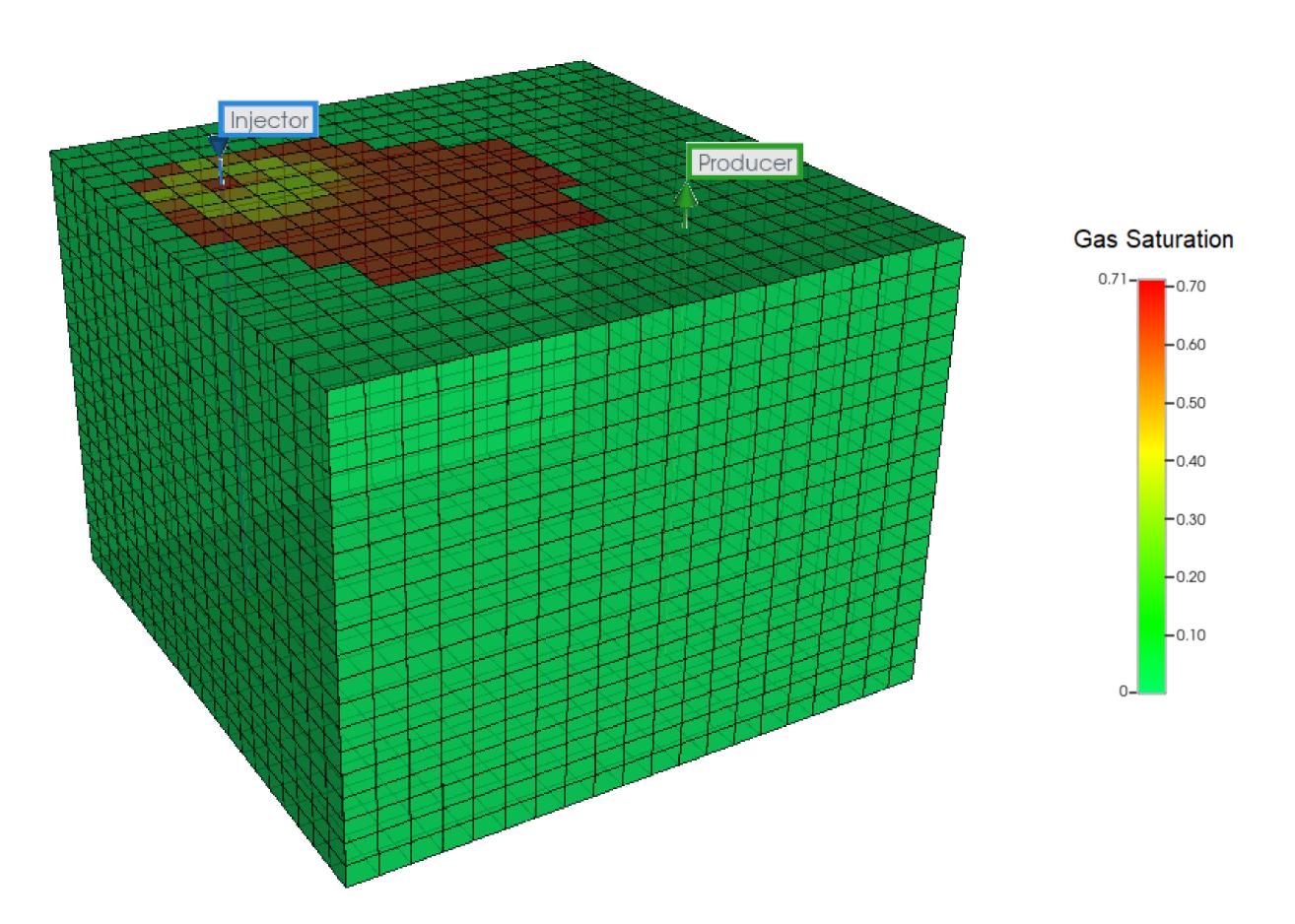
1.00

Mineralogy = Calcite (40%), Dolomite (20%), Anhydrite (9%), Barite (0.1%), Gypsum (<0.001%).

$$CaCO_3 + H^+ \Leftrightarrow Ca^{2+} + HCO_3^-$$

$$HCO_3^- + H^+ \Leftrightarrow H_2O + CO_2$$

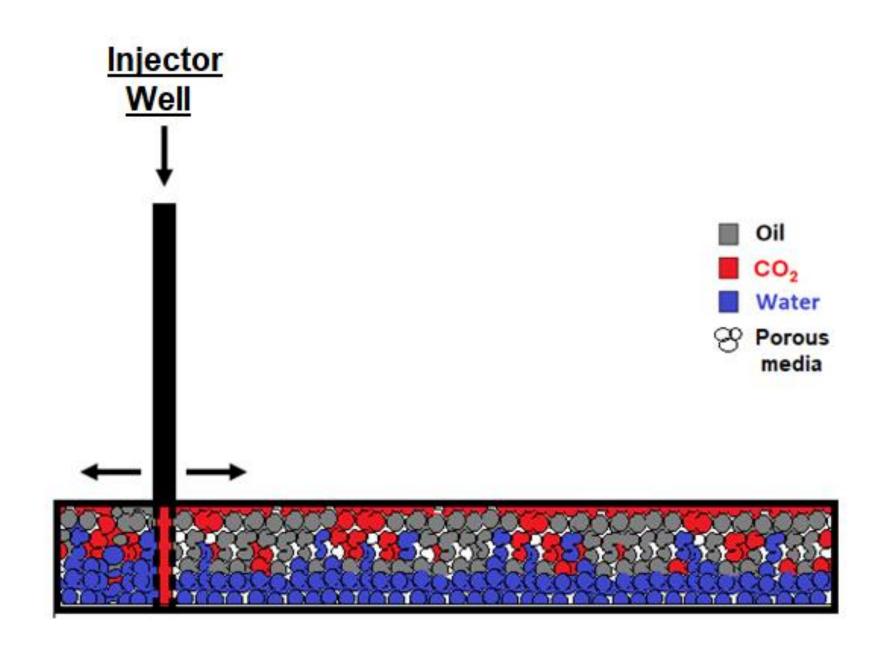
$$CO_3^{2-} + H^+ \Leftrightarrow HCO_3^-$$


$$OH^- + H^+ \Leftrightarrow H_2O$$

$$CaSO_4 \Leftrightarrow Ca^{2+} + SO_4^{2-}$$

$$BaSO_4 \Leftrightarrow Ba^{2+} + SO_4^{2-}$$

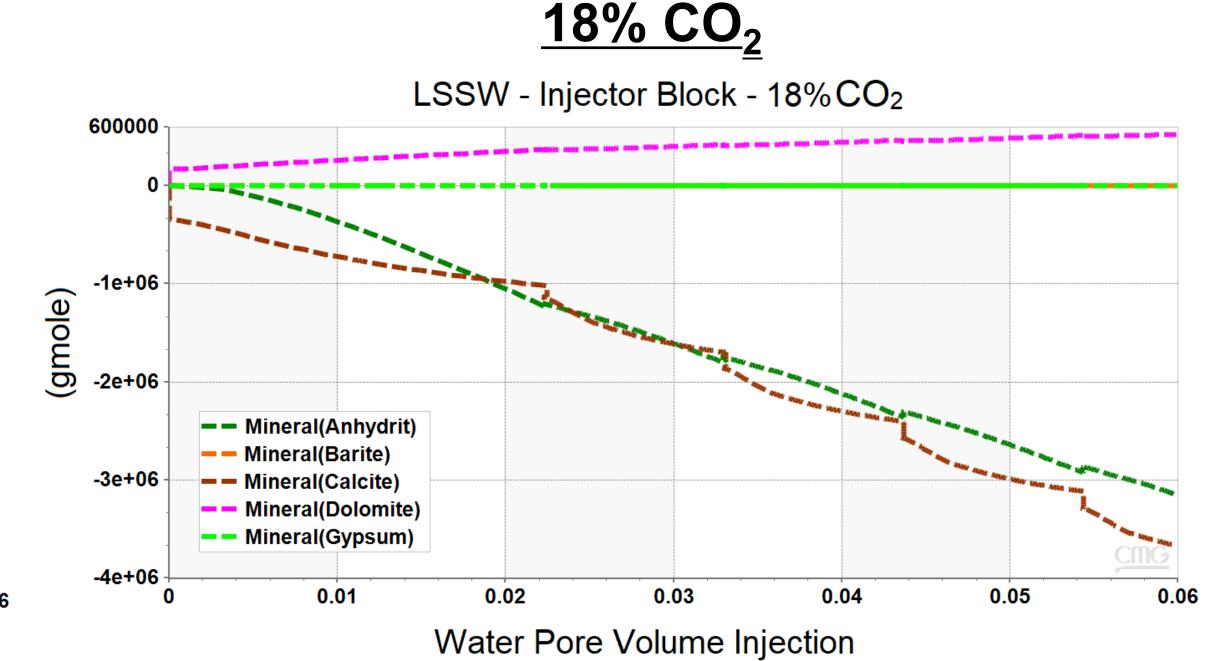
$$CaMg(CO_3)_2 + 2H^+ \Leftrightarrow Mg^{2+} + Ca^{2+} + 2HCO_3^-$$


$$CaSO_4. H_2O \Leftrightarrow Ca^{2+} + SO_4^{2-} + H_2O$$

Oil Compositions (mole fraction)			Reservoir properties		
Components	1% CO ₂	18% CO ₂	Model Properties	Value	
CO ₂	0.01	0.18	Temperature	90°C	
N2 to CH4	0.20	0.03	Original Pressure	650 bars	
C2H to NC4	0.16	0.16	Depth of reservoir top	5,750 m	
IC5 to C07	0.21	0.21	Depth of water-oil contact	6,700 m	
C08 to C12	0.17	0.17	Connate water saturation	0.29	
		_	Porosity	0.20	
C13 to C19	0.13	0.13	Permeability	200 x 200 x 20 mD	
C20 to C30	0.12	0.12	Number of grid blocks	20 x 20 x 20	

WHY / PURPOSE

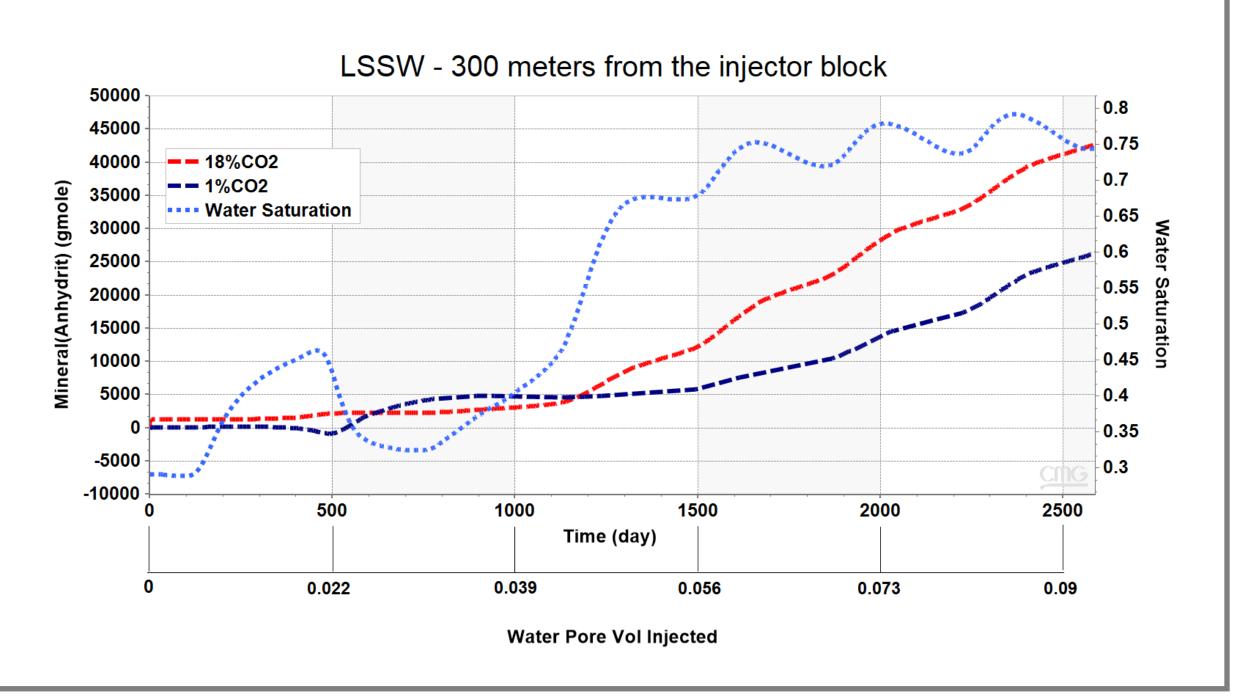
- studies research geochemical impact of reservoir properties on brine composition in different carbonate reservoirs.
- The main goal is to better predict the composition of produced brine in order to define effective reservoir management strategies from the early stages of an oilfield project.



RESULTS

1% CO₂ LSSW - Injector Block - 1%CO₂ -500000 Mineral(Anhydrit) -2.5e+06 Mineral(Dolomite Mineral(Gypsum) -3.5e+06 Water Pore Volume Injection

		1% CO ₂	
Components (mg/L)	FW	LSSW	Produced Brine
- components (mg/L)			@32.8%LSSW
Ca ²⁺	1732	128	1441
Mg ²⁺	43	117	36
K ⁺	1893	401	1383
Na⁺	60915	10799	44550
Sr ²⁺	84	2	61
Ba ²⁺	0.4	0	0.3
SO ₄ ²⁻	849	4	976
CI-	97286	17512	71106
HCO₃⁻	180	105	229
pН	5.54	7.08	7.38


- The amount of CO₂ in the oil phase significantly affects brine composition despite the large volume of CO₂ injected during CO₂ WAG EOR.
- CO₂ partitioning from the oil into the water phase has a greater impact on mineral reactions than CO₂ partitioning from the injected gas into the water phase.

Total model dimensions

2000 x 2000 x 100 m

		18% CO ₂	
Components (mg/L)	FW	LSSW	Produced Brine @38.2%LSSW
Ca ²⁺	25287	128	19503
Mg ²⁺	2613	117	480
K ⁺	750	401	513
Na⁺	20709	10799	14164
Sr ²⁺	436	2	298
Ba ²⁺	12	0	4
SO ₄ ²⁻	117	4	71
Cl-	90743	17512	62747
HCO₃⁻	614	105	290
pН	4.31	7.08	6.13

Gusmao, P.B. and Mackay, E., "The Impact of Reservoir Properties on the Sulphate Content of Produced Brine in Carbonate Reservoirs under Seawater-Alternating-Gas Injection", SPE Oilfield Chemistry 2025, https://doi.org/10.2118/224282-MS.

