

Scale Prediction and Prevention during Geothermal Brine Production

Sh. Mohammadi, K.S. Sorbie, L.S. Boak, Kh. Jarrahian, E.J. Mackay sm2219@hw.ac.uk Heriot-Watt University

BACKGROUND

Scale Problem in Geothermal **Power Plants**

• Exploitation of geothermal resources, upon flashing and cooling of brines, is frequently accompanied by significant deposition scale and a decrease in the amount of obtained energy from the power plant.

METHODOLOGY

TEST CONDITIONS	
Mg:Si Mix Concentrations (ppm)	Worst Silicate Case 60ppm:940ppm
Mg:Si Mix Ratio	50:50
pH	8.5
Τ	60° C and 95° C
Overall Test Volume	100ml
Quench Solution	1% EDTA/NaOH

INHIBITION EFFICIENCY TEST PROCEDURE

energu MULATION

60°C/95°C

—— Polymer% in Solution

- **Common Scales**
 - Amorphous Silica lacksquare
 - Metal Hydroxides/ Silicates
- Carbonates (e.g. $CaCO_3$)/ Sulphates (e.g. CaSO₄)
- **Scale Inhibition Approaches**
- Scale Inhibitors \bullet
- Acidification/alkalinization of the disposal brine
- Aging silica over-saturated waters
- Treating the brine with various metal cations
- Reinjecting the disposal brine at higher temperature

Objective/Why

Objective \bullet

Developing a static bottle test methodology to assist in efficient identifying silicate inhibitors/dispersants with high inhibition performance (80-90%), applicable for IOW geothermal enthalpy heat recovery systems to prevent silicate scale from occurring.

Why?

- In geothermal power plants, silica scaling is recognized as a potential limiting factor in the amount of extracted energy.
- **Context of Study**
 - Investigating inhibition efficiency and mechanism of polymer-based two scale inhibitors/dispersants, denoted SI A5 B through and determining the concentration within of sulphur, contained their structure, alongside the scaling ion consumption Of magnesium and silicate by ICP-OES and measuring their concentration by a polymer Hyamine matched matrix technique.

20

- At 60°C, \geq 50ppm SI B is required to achieve an IE of 60-90% over 3days with 40-60% polymer remaining in solution. While, at 95°C, \geq 50ppm SI B is needed to effectively control scale formation at 80-90% with 40-60% polymer left in solution, hence SI B performs better at higher temperature.
- For A5 at 60°C, \geq 50ppm records 80-90% IE with 50-60% polymer remaining in solution over 3 days. However, at 95°C, \geq 100ppm A5 gives 70-90% IE with 50-70% polymer left in solution.

SI B is the more effective SI under the tested conditions.

20

